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ABSTRACT  

Arsenic is a naturally occurring toxic metalloid 

present worldwide. Arsenic in its inorganic form is 

the most hazardous and is responsible for causing 

different diseases like cancer, skin disease, and 

many neurological disorders in humans which can 

be demonstrated by several experimental models. 

Contamination of the drinking water by metal 

toxins has been a major problem worldwide in 

which arsenic is one of the major. For the past few 

decades, there has been increased concern about the 

health risk due to arsenic and lots of 

epidemiological studies have been done suggesting 

an arsenic role in developing neurotoxicity. They 

also suggest the neurological damage caused by 

arsenic in children. In this current work, we are 

trying to explore the different mechanisms involved 

in arsenic neuropathy and the effects of arsenic-

contaminated water on the spatial memory, frontal 

cortex, and hippocampal ultra-structures, and many 

other different regions of the brain disrupted by 

arsenic. Additionally, this review will guide the 

viewer to determine their future directions for the 

remission of developing arsenic neuropathy. 

Keywords: Arsenic · Oxidative stress · 

Neurotoxicity · Frontal cortex · Hippocampus   

 

I. INTRODUCTION 
Arsenic, a metalloid occurring worldwide 

found in the environment from various natural and 

anthropogenic sources [1] at an average 

concentration of 1.8 ppm [2]. Arsenic is first of all 

the toxicants posing a significant known or direct 

and indirect potential threat to humans [3]. It is a 

co-carcinogen and in lower concentration also 

known to increase cognitive impairment [4]. It 

exists both in plants and animals, naturally, it 

occurs in its organic form which is less toxic [5]. 

Most exposure to humans occurs from the 

consumption of water in the form of inorganic 

arsenic (iAs) i.e., arsenite (As [III]) and arsenate 

(As[V]), which is abundantly available in water and 

the most toxic form of arsenic [6]. The presence of 

arsenic in the groundwater is a major health 

problem globally, due to its various ailing effects 

[7, 8, 9]. Therefore, the identification of new 

regions with arsenic contamination in Asia has 

aroused great concern, as the large population is at 

risk of exposure [10, 11, 12]. Around 140 million 

people all over the world are exposed to arsenic-

contaminated water [13]. Besides, its anthropogenic 

uses as an alloy, different semiconductor, 

transistors, metal adhesives and pigment factories 

[14, 15], mining, fossil fuels burning, natural 

weathering, and volcano eruptions also introduce 

arsenic to the environment [16] and therefore the 

presence of arsenic in the environment enhances 

the risk of exposure to humans which arises a need 

to explore its possible clinical effects and its 

various other links and other environmental 

sources.  

Consumption of arsenic-containing water 

above 50g/l during pregnancy enhances the risk of 

fetal loss [17, 18]. It is also found to enhance 

immune suppression and incident to various 

infectious diseases in both mother and child [18, 

19]. Peripheral neuropathies are quite common in 

arsenic-exposed individuals [20]. Neurological 

deficits in children and adults have been reported as 

the consequences of environmental and 

occupational exposure to arsenic [21, 22]. Arsenic 

exposure (>10 µg/L), the permissible water arsenic 

concentration considered safe by the WHO which 

can lead to declines in its different ailing effects. 

 

1.1 Arsenic metabolism 

The most common valence state of 

inorganic arsenic (AsV) is its arsenate form 

whereas arsenite is potentially found in 

groundwater in the form of sodium arsenite 

(Na3AsO3) due to the interaction with aquifer 

minerals and physiochemical conditions favoring 

its release. 
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Figure 1.  Proposed metabolic pathway of conversion of inorganic arsenic to organic arsenic 

 

The proposed metabolic pathway of 

Arsenic is shown in Figure1 [23, 24]. Glutathione 

conjugation and Oxidative methylation are known 

to be the primary pathways of Arsenic metabolism 

[25]. Inorganic Arsenic (V) is reduced to Arsenic 

(III). Inorganic Arsenic (III) is methylated to 

methyl arsenic acid (V) and methylarsenious acid 

(III) which is reduced and methylated to 

Dimethylarsenic acid respectively. Dimethylarsenic 

acid formed by oxidation and reduction of As(III) 

and As(v) forms Dimethylarsenious acid (III).  

Higher occurrence of skin lesions, cancer, 

neurological disorders, impairment of 

psychological and mental health, cardiovascular 

disorders, and infertility problems are reported in 

countries like Colombia, Argentina, Japan, Mexico, 

Bangladesh, and Taiwan where consumption of 

groundwater is high [26, 27, 28, 29, 30, 31]. Rising 

evidence of animal and human studies indicates 

that arsenic has toxic effects on the central and 

peripheral nervous systems [32, 33]. Presently, the 

concern over the increasing neurotoxicity of arsenic 

has been raised. [34, 35]. Development of 

physiological abnormalities including decreased 

growth rate, neural defects, malformation [36, 37, 

38], and other behavioral changes as arsenic can 

directly reach the brain as it can cross the blood-

brain barrier and placental barrier freely [39, 40, 

41, 42, 43]. Several epidemiological studies have 

demonstrated that arsenic exposure leads to poor, 

impaired cognitive, and neuropsychological 

functioning suggesting its role in brain 

dysfunctions [44- 47]. Infertility, Neural tube 

defects, neonatal deaths, spontaneous abortion were 

reported in pregnant women consuming water 

contaminated with high arsenic content [36, 48, 49, 

50]. Arsenic levels are also found in the breast milk 

of Bangladeshi women which can adversely affect 

the infant’s health [51]. This finding suggests 

arsenic may cause impaired fetal growth and can 

also affect infant health adversely. The underlying 

mechanism of arsenic-induced neurotoxicity is not 

clearly known, though several mechanisms have 

been proposed from various animal and human 

studies. Arsenic metabolites cause the inactivation 

of the enzymes involved in the cellular pathways as 

well as the formation and repair of DNA is the 

target of the metabolites formed [52], oxidative 

stress, thiamine deficiency, and decreased 

acetylcholinesterase activity are some of the 

mechanisms involved in the arsenic-induced 

neurotoxicity. 

 

II. EXPERIMENTAL AND 

EPIDEMIOLOGICAL EVIDENCES 

OF ARSENIC INDUCED 

NEUROTOXICITY 
2.1 Experimental evidences 

Long-term arsenic exposure to humans has 

been associated with impaired intellectual function 

in children and adults. Various In vitro and In vivo  

studies have been conducted as epidemiological 

evidence of As-induced impaired cognition.  

Several studies have been conducted that 

in mice providing evidence for the toxic effects of 

arsenic on the entire brain [53, 54] and its discrete 

regions [55, 56]. Studies also support the evidence 

that assures the effect of acute and chronic 

exposure of arsenic develops deficits in spatial 
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working memory, short term, and long term 

memory impairment, and damaging different 

neurological regions responsible for memory 

impairment. The study indicates the effects of 

arsenic-containing drinking water on different 

regions of brain hippocampal ultra-structures, 

spatial memory, and N-methyl-d-aspartate receptor 

expression in SD rats [57]. Some studies also 

indicate that Postnatal exposure to low-

concentration of arsenic induces autism-like 

behavior and affects the frontal cortex in the brain 

of rats [58].  

A. Anwar-Mohamed et. al. investigated 

and found that acute arsenite (As(III)) exposure can 

lead to a decrease in cytosolic phospholipase A2 

(cPLA2) with a subsequent decrease in brain 

catalytic activity of mice. It also alters CYP 

epoxygenases and CYP -hydroxylases, increases 

expression of cyclooxygenase-2 (COX-2), 5-

lipoxygenase (5-LOX), and 15-LOX mRNA while 

decreasing prostaglandins F2 (PGF2) and PGJ2. 

This altered state of the different enzymes affects 

brain development and neurochemistry [59]. 

 

2.2Epidemiological evidences  
Many Epidemiological investigations 

found that low level and chronic exposure to 

arsenic can be broadly related to serious toxic 

effects on intellectual functions and early exposure 

to arsenic can cause full memory deficit by 

interfering with different brain functions. 

In children, adverse neurobehavioral 

outcomes have been associated with acute and 

chronic arsenic exposure. A meta-analysis in 

arsenic-exposed children indicated intelligence 

deficits; considering 4 cross-sectional studies in 

China on arsenic exposure and IQ effects, this 

analysis found that the overall mean IQ score of 

children who lived in arsenic-exposed areas was 

more than 6 points lower than the mean score in 

unexposed children.36 Indeed, a growing number 

of studies are confirming intellectual deficits 

associated with arsenic exposure in children as 

young as 5 years of age [60-68]. 

A cross-sectional study conducted on 

older age relates to chronic arsenic exposure in 

adolescents. The study found that adolescent 

exposure to the arsenic-contaminated water in early 

life performed poorly in 3 of 4 neurological 

subtests when compared with the unexposed 

control groups, indicating an alteration in 

neurobehavioral development in later life might be 

due to the exposure during childhood exposure 

[69]. 

A study on the geriatric population 

exposed with long term low-level arsenic exposure 

(average 6.33 mg/L), estimated by the geographic 

information system (GIS)-based models was 

significantly associated with impaired executive 

functioning, slower processing speed, diminished 

visuospatial skills, poorer global cognition, slower 

processing speed, reduced language and reduced 

short term memory [70]. 

A study on 6-8year old school children in 

Mexico suggested that arsenic toxicity can lead to 

different neurological alterations including 

memory, problem-solving ability, and attention 

span [63]. A longitudinal cohort study was 

conducted on children in Bangladesh suggested that 

there was a reduction in verbal IQ and full-scale IQ 

associated with arsenic exposure [71]. 

Urinary arsenic has been inversely 

associated with full and verbal IQ in 6-8yr old 

children in Mexico [60]. Finally, arsenic in 

drinking water has been associated with decreased 

full IQ scores in children 6- to 10 years of age [62]. 

In a meta-analysis, including 15 studies evaluating 

the effect of arsenic on neurodevelopment, in 

which 13 articles showed a significant effect on 

neurodevelopment in children of age between 5- 

15years. In separate meta-analysis assessing arsenic 

exposure in urine (n ¼ 6) and those that studying 

drinking water (n ¼ 4), observed that combined 

effect suggests that a 50% increase in arsenic level 

in urine would cause a reduced IQ level by 0.39 

points, whereas 50% increase in water causes a 

significant reduction in full-scale IQ by 0.65 points 

[72]. The timing of exposure to arsenic seems to 

affect the outcome. 

In a study that directly quantified water 

arsenic exposure, above-median early prenatal 

maternal arsenic exposure in drinking water was 

found to be associated with a decreased verbal IQ 

in children, and late gestational maternal arsenic 

exposure was associated with a decreased 

performance IQ in children at 5 years of age [51]. 

 

III. MECHANISMS INVOLVEMENT 

IN NEURODEGENERATION AND 

MEMORY IMPAIRMENT OF 

ARSENIC 
3.1Oxidative stress and intracellular pathways 

activation :In vivo  studies have demonstrated that 

high iAs concentration (i.e., 4 mg/L), leads to 

neurological damage-inducing oxidative stress and 

decreased amount of superoxide dismutase, 8-

nitroguanine and peroxiredoxin 2 and expression in 

the neurological tissue of exposed rodents [73], 
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glutathione after exposure to 50mg/L [74] and 

increased expression of superoxide anion, singlet 

oxygen, hydrogen peroxide, hydroxyl radical, and 

peroxyl radicals in different cells [75, 76, 77]. The 

main signal transduction pathways altered by ROS 

are: (i) the tyrosine phosphorylation system;  

(ii) transcription factor families, including the 

activating protein-1 (AP-1) and nuclear factor-kB 

(NF-kb); and (iii) mitogen-activated protein kinases 

(MAPKs) like ERK1/2 [78]. 

 

3.2 Pro-inflammatory mediators:Fry et al., 

found that iAs in concentrations higher than 

10mg/L are known to cause overexpression of NF-

Kb and IL-1B in the umbilical cord of newborns 

which causes the overproduction of the 

inflammatory mediators in urothelial cells [79]. An 

increase in different inflammatory markers – such 

as TNF-a, IL-1a, IL-8, and IL6 are also get 

increased in human and rodents peripheral blood 

[80, 81, 82]. 

 

3.3 Neurotransmitter synthesis and 

regulation:Arsenic has been found to produce 

decreased levels of different neurotransmitters, 

such as norepinephrine (NE), epinephrine (EPN), 

Dopamine (DA), serotonin (5-HT), and 

acetylcholine in the different regions of rats brain 

exposed to sodium arsenite(20mg/L p.o) [83], 

whereas glutamate expression also gets reduced in 

the brain when rats are being exposed to sodium 

arsenite(70mg/L) [84]. As arsenic activates 

multiple pro-inflammatory signaling pathways 

which in turn activates indoleamine 2,3-

dioxygenase or IDO leading to a reduction in 

serotonin availability increasing KP’s (kynurenine 

pathway) intermediates which negatively 

modulates the release of different neurotransmitters 

including Ach, dopamine, GABA, and glutamate 

[85]. Therefore, KP impairment may impose a 

negative impact on the brain and can lead to many 

neurological and neurodegenerative diseases and 

also cognitive deficits [86].  

 

3.4 Mitochondrial Dysfunction:There are several 

studies that support the damage in the 

mitochondrial region of the brain region by 

arsenic at different concentrations in rats that 

are 2 mg /kg BW for 10 weeks [87], 2.5 mg 

/Kg BW for 4weeks [88], 20 mg/Kg BW for 28 

days [89], 10 mg/ kg BW for 16 weeks [90] 

and 100 ppm for GD 6 to PND 21, 28 and 3 

months [91] and found that there is an increase 

in ROS, lipid peroxidation in the frontal cortex 

and hippocampus region of the brain and 

reduced content of GSH, MnSOD and CAT, 

GPx and GST in rats and pups respectively in 

the mitochondria of the cerebral cortex, 

cerebellum and hippocampus regions of the 

brain. 

 

3.5 Autophagy impairment:Studies show that 

autophagy plays an important role in regulating 

pathophysiology [92], as there are many 

neurodegenerative diseases associated with 

impaired autophagy such as Parkinson’s, 

Autism, Alzheimer’s, and Huntington’s where 

defective BBB plays a major role [93]. Ram 

Kumar Manthari et.al. found that the leaky 

BBB in the cerebral cortex and hippocampus 

may facilitate the transfer of As and induces 

autophagy by inhibiting PI3K/Akt/mTOR 

signaling pathway that causes the rats at 

PND21 more vulnerable to As-induced 

neurotoxicity [94]. Qi etal., found that sodium 

arsenite (0.25mM) inhibited autophagy in 

human bronchial epithelial cells [95]. 

 

3.6 Ultra-structural changes in Brain and 

accumulation of proteins:Ultrastructural 

changes in neurons and endothelial cells in the 

hippocampus, found when the rats are being 

chronically exposed to sodium arsenite. The 

expressions of NMDAR subunits in the 

hippocampus were decreased and there was a 

reduction in NR2A mRNA levels in the 

hippocampus after arsenic exposure [96]. 

Many In vitro and In vivo  studies showed that 

the metabolites induce tau protein 

hyperphosphorylation, which is acytoskel 

biomarker for different neurological disorders 

[97,98]. As arsenic is known to cause oxidative 

stress which can lead to lead to the activation 

of kinases, including GSK-3and p38, which 

phosphorylates tau proteins leading to 

disassembling of microtubules and is 

responsible for the formation of tau oligomers 

[99]. Sodium arsenite has also been reported to 

decrease PPARg expression while increasing 

TNF-a and NF-kb contributing to the 

formation of reactive species and Ab 

oligomers. 

 

3.7 Impaired expressions of proteins:Studies 

have shown that arsenic in its trioxide form at 

0.15 mg or 1.5 mg or 15 mg doses when 

administered from gestational to lactational 

and continued to the pups till PND42 in 
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drinking water causes declined mRNA 

expression of TJ proteins, Occludin protein, 

PI3K, Akt, mTOR, and p62 [94].  

 

3.8 Endoplasmic reticulum stress:Endoplasmic 

reticulum stress: Accumulation of misfolded 

proteins triggers unfolded protein response 

(UPR). An impaired UPR, leading to 

apoptosis. In brain protein aggregation, 

improper synaptic function, impair signal 

transduction contributes to the development of 

several neurodegenerative diseases. AD, PD, 

HD, and ALS besides their protein folding and 

aggregation are also characterized by increased 

ER stress and UPR activation [100]. The 

ability of sodium arsenite and metabolites in 

rat liver cells was also demonstrated [101]. 

Bolt et al. established that In vitro 1.5mM 

sodium arsenite activates the ER stress in 

three-pathways: protein kinase-like 

endoplasmic reticulum kinase (PERK), inositol 

requiring enzyme (IRE-1) in human B 

lymphoblastoid cell line, and activating 

transcription factor 6 (ATF6) [102]. Chiu et al. 

found that programmed cell death was induced 

on exposure to arsenic trioxide through the 

stimulation of ER stress. It was also found to 

suppresses the ubiquitin-proteasome system 

and Akt/mTOR signaling pathways in human 

sarcoma cells [102, 103]. 

Studies indicate that arsenic-induced ER 

stress is associated with both ROS-dependent and 

ROS-independent pathways, and includes 

phosphorylation of eIF2a (the translation initiation 

factor) and over-expression of chaperones 

[101,104,105]. Also, involve activation of JNK/Erk 

pathway has been found to be involved in ER-

related cellular apoptosis [104]. 

Some of the In vitro studies account that 

iAs also disrupt mitochondrial membrane potential, 

increasing intracellular calcium level and increased 

cytochrome C level and impair Akt expression and 

activation leading to arise different mechanisms for 

the development of arsenic toxicity activation 

[106,107,104]. 

 

IV. CONCLUSION 
Several experiments have been conducted 

in the last few decades which shows arsenic is one 

of the major toxinscontaminating water and it 

seems that it is the major cause behind many 

neurodegenerative diseases and cognitive 

impairment in adults as well as in children. On 

analysis, the mechanism underlying the 

neurotoxicity include neurotransmitter synthesis 

and their transmission, Protein accumulation and 

their impaired expressions, increased oxidative 

stress, production of pro-inflammatory mediators, 

impaired autophagy. Based on these, we can 

conclude that arsenic via the above-discussed 

mechanisms may lead to imposing neurotoxic 

effects on different regions of the brain that may 

lead to neurodegeneration and cognitive 

impairment. 
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